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Passive Magnetic Bearings for Vehicular Electromechanical 
Batteries  

Richard F. Post 
Lawrence Livermore National Laboratory 

I) Introduction 

This report describes the design of a passive magnetic bearing 
system to be used in electromechanical batteries (flywheel energy 
storage modules) suitable for vehicular use. One or two such EMB 
modules might, for example, be employed in a hybrid-electric 
automobile, providing efficient means for power peaking, i.e., for 
handling acceleration and regenerative braking power demands at 
high power levels. 
based on a "dual-mode" operating regime as follows: 

The bearing design described herein will be 

The bearing/suspension system for use in a modular 
electromechanical battery that is intended for service in a hybrid- 
electric drive automobile has two distinctly different service 
requirements. For the majority of its service life, say 100,000 hours 
(11.4 years) the vehicle will be parked and the bearing system must 
have low losses (typically 10 Watts or less) and, preferably, operate 
in a contactless mode, that is, with pure magnetic levitation. 
contrast, during the approximately 4000 hours of operation on the 
road (100,000 miles at an average speed of 50 mph) that the vehicle 
will experience during its service life the requirements are markedly 
different: Acceleration loads will be frequent and substantial, but 
increased bearing losses (say several tens of watts) during those 
momentary loads, as long as they are accommodated thermally, 
be of little consequence as compared to the large power transfers 
occurring between the EMB and the drive train. 

By 

will 

These considerations permit the design of a dual-mode bearing 
system, Le., one that has low losses (and relatively low stiffness) 
when the vehicle is parked, but has high stiffness under acceleration 
overloads while the vehicle is on the road. The former objective can 
be achieved through the passive bearing concepts to be described in 
this report. 
"backup" bearings whose expected service life thus needs only to be 
a few thousand hours. 

The latter one can be accomplished by means of 
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In the LLNL design of an EMB, because of its use of a dipole 
Halbach array in the generator/motor, the gap between the magnet 
array and the vacuum barrier between the array and the stator can 
be large. Also, as predicted by theory and as demonstrated in prior 
tests, there are virtually no sideways forces associated with the 
transfer of high peak powers out of or into the rotor. 
consequence of these circumstances is that the passive bearing 
system can have relatively low stiffness and permit relatively large 
displacements before contact is made with the secondary (backup) 
bearing system. 
design a viable passive magnetic bearing system for vehicular 
service with bearing stiffnesses that are much lower than those 
required in systems employing conventional generator/motor 
designs. In those systems the generator/motor system has narrow 
gaps and may exert large transverse, whirl-producing, forces, thus 
demanding both high bearing stiffnesses and strong damping for 
stable operation. 

The 

This relaxation of requirements makes it possible to 

To accomplish the operational objectives that have been 
described the passive magnetic bearing system will use permanent 
magnet elements in its components. 
the magnetic field from such elements is temperature dependent, 
and since vehicular use involves a large range of ambient 
temperatures, this fact imposes an additional requirement on the 
design: The force equilibria and the behavior under accelerations of 
the bearing system should be relatively insensitive to changes in the 
remanent field of the permanent magnets caused by temperature 
variations. 
designs that would otherwise be satisfactory. 

However, since the intensity of 

This requirement rules out a large class of bearing 

Summarizing, the passive magnetic suspension system to be 
described will have low losses when the vehicle is parked. 
vehicle is in motion the magnetic bearing system, possibly aided by 
shock-mounts,' will have stiffnesses that are adequate to 
accommodate normal accelerations (for example, up to 1.0 g). 
Beyond these levels it will employ a momentary-contact backup 
bearing system, as called for by acceleration loads that lead to large 
lateral or vertical displacements of the rotor relative to its housing. 
The losses of this secondary bearing system need not be lower than 
those set by thermal considerations, and its duty-cycle time will be a 
very small fraction of the service life of the vehicle. 
design will also be shaped by the requirement that the performance 
of the bearing system should be adequately insensitive to changes in 

When the 

The overall 
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the parameters of its permanent magnets caused by changes in the 
ambient temperature. 

11) General Design Principles 

The general design principles involved in the LLNL passive 
magnetic bearing systems are described in the author's issued 
patent: "Dynamically Stable Magnetic Suspension/Bearing System.", 
U.S. Patent #5,495,221. 
embodiments employing purely passive means for overcoming the 
strictures of Earnshaw's Theorem (the theorem that proves the 
impossibility of statically levitating objects by means of magnetic 
fields produced by fixed permanent magnets or fixed electrical 
currents). The concepts involved include: 

The patent describes a variety of 

The use of dynamical effects to stabilize a rotating object above 
a low critical speed. 
reached mechanical or other means are used to maintain 
stability .) 

(From rest and until this critical speed is 

0 The achievement of stability (above a critical speed) by the 
tailoring of the vector sums of the force derivatives of the 
several elements of the bearing system so as to satisfy specific 
quantitative cons train ts . 

The use of spatially periodic magnetic fields, coupled with 
rotation, to produce a repelling force between two elements, 
and the use of such elements to provide stabilizing force 
derivatives.  

The underlying thesis is that stable levitation of a rotor must 
be attained by a quantitative "tuning" of the force deiivatives 
(negative or positive stiffnesses) of the several elements of a passive 
magnetic bearing system, where each element of the system, by 
itself, is unstable for either radial or axial displacements or, at best, 
is neutrally stable. 

In the description to follow of a specific passive bearing design 
there are four types of elements that will be used to construct the 
entire system. They are: 

1. Pairs of washer-shaped permanent magnet rings (or their 
equivalent) used in either an attracting or a repelling mode. 



4 

2 .  Planar Halbach arrays [ 11, consisting of trapezoidal-shaped 
permanent-magnet bars arranged side-by-side to form a 
circular array. 

3. Planar circuit arrays within which currents are induced, with 
the generation of repelling forces, when these arrays are near 
to a rotating Halbach magnet array. 

4. Conventional ball-bearings, in mountings that engage at low 
rotation speeds, and then disengage at higher speed, leaving 
clearance gaps that define the maximum displacements before 
"touch down" occurs. 

The bearing system as a whole will be built up from various 
combinations of the above elements, sized so as to be compatible 
with the requirements of levitation (force balance against gravity) 
and stability (net negative force derivatives). 

111) Geometry of the Bearing System 

The EMB with which the magnetic bearing system is to be used 
has a vertical axis of rotation. Thus the direction of the levitation 
force required is also vertical. 
motion, and unless some form of gimballing is employed, the rotation 
axis may tip a few degrees from the vertical, thus requiring both 
axial and radial components of levitating force. To provide the 
vertical levitating force in a manner that is intrinsically stable 
against axial displacements, Le., where there always will exist an 
axial position that is at the minimum point of the axial potential 
function, we will employ two pairs of ring-shaped permanent 
magnets (or their equivalent), operating in a repelling mode. 
uppermost element of the upper pair is fastened to the support 
structure, as is the lowermost element of the lower pair. 
these stationary elements will be able to exert a maximum force on 
its rotating partner that exceeds the weight of the rotor. 
requirement forces the position of axial force equilibrium to be 
located between the points on the axis corresponding to the 
maximum allowable displacements, up or down, before physical 
contact between the repelling magnet pairs occurs. This opposed- 
pair configuration also satisfies another requirement that we have 
made, namely, insensitivity to ambient temperature changes. As 
long as the excess magnetic force from the exciting permanent 

However, when the vehicle is in 

The 

Each of 

This 



5 

magnets, alluded to above, persists at the maximum ambient 
temperature that is to be encountered, an axially stable equilibrium 
will always be maintained. 

Thus far we have created a situation where stability against 
axial displacements is assured, independent of temperature or 
orientation of the axis. (It would work just as well upside down.) 
However, as dictated by Earnshawls theorem, this system is unstable 
against displacements, either purely transverse to the axis of 
rotation, or tilting in nature. 
displacements requires no net transverse force if the axis is vertical. 
It only requires the presence of elements that provide negative force 
derivatives in the transverse direction whose magnitude exceeds the 
positive (unstable) force derivatives associated with the top and 
bottom repelling element pairs. 
stabilizing elements to provide an axial force component. 
component is provided stably by the repelling pairs at top and 
bottom. 

To stabilize the system against such 

There is also no need for the added 
This force 

To provide the required radial stabilizing force derivatives, top 
and bottom, we will employ special passive bearing "cartridges." 
Each such cartridge is made up of three of the elements described 
above. At the top and the bottom of each cartridge there will be 
located ring-shaped magnet pairs (or their equivalent), oriented in 
the radially stabIe mode. The third element, needed for axial 
stabilization of the other two is described in detail below. It is 
composed of two Halbach arrays rotating above and below a 
stationary set of windings, as described in items 2 and 3 of the list of 
bearing elements given earlier. 

Considering first the use of ring-shaped permanent magnets, 
there are two possibilities: 
annular magnet rings (or their equivalent) magnetized in the 
attracting mode, at the top and bottom of the cartridge. 
members of each pair will be connected to the rotating shaft that 
supports the rotor, leaving a small gap at each end between the 
rotating magnets and their stationary partner. 
equal at both ends the axial attractive force exerted between the 
inner and outer magnets of the two magnet pairs will exactly cancel. 
At this (unstable) position of axial force equilibrium the cartridge 
will be capable of supplying a strong radial force derivative with no 
axial force component. The general configuration just described is 
shown schematically in Figure la.  

One is to use a pair of matching-diameter 

The inner 

When the gaps are 
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The second way in which the cartridge could be built using 
permanent magnet rings would be to use nesting annular ring 
magnets, with the direction of magnetization being the same in each. 
When this magnet pair is nested symmetrically with respect to each 
other it exhibits a strong radially restoring force derivative, with no 
axial force component. This configuration is depicted schematically 
in Figure Ib. 

Because it will be used later in a "straw man" bearing design, 
another approach, one that uses soft iron poles in its operation, will 
be mentioned. 
bearing element might take. 
excited by a washer-shaped ring of permanent magnet material 
embedded within the pole structure. The force (either attracting or 
repelling) that will be exerted between two similar pole structures 
arises from the magnetic fields in the radial gap between the inner 
and outer pole faces. This configuration, though more complicated 
than the use of simple ring-shaped magnets (as in Figures l a  and 
lb), has two major advantages: 
tend to smooth out any azimuthal variations in magnetic field 
strength associated with azimuthal non-uniformity of the properties 
of the permanent magnet ring. This smoothing effect will lead to 
reduced eddy current losses. The second advantage is that the pole 
structure provides a means for strengthening the assembly against 
centrifugal forces. High-field permanent-magnet material, though 
strong in compression, is rather weak in tension. In the magnet-ring 
design the forces in the rings is tensile in nature. However, in the 
pole design the forces on the ring magnet (which may be segmented 
azimuthally) are compressive, allowing higher rotation velocities for 
a given bearing element diameter. Furthermore, if need be the outer 
surface of the outside pole can be reinforced by winding it with high- 
modulus graphite fiber composite. 

Figure 2 illustrates a possible form this type of 
As shown (in section) annular poles are 

First, the use of soft-iron poles will 

Using only any pair of the type of elements described above, 
however, the axial force equilibrium position within the cartridges is 
an unstable one. That is, in each case the axial position of 
equilibrium is characterized by negative stiffness (positive force 
derivative). 
maintain this equilibrium; only a net negative (restoring) force 
derivative is required. The negative force derivative required for 
internal axial stability of each cartridge is to be supplied by a special 
arrangement of two planar Halbach arrays, attached to the shaft, 

Again, however, no net axial force is required to 
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coupling magnetically to a stationary planar circuit array located 
midway between them. This configuration is shown schematically in 
Figure 3. 

A further essential feature of the idea is that the Halbach 
arrays must be oriented relatively to each other azimuthally "in 
phase," that is, so that their azimuthal field components add at the 
midplane, while their axial field components cancel. 
case, and when the planar circuit array is located midway between 
the two Halbach arrays, there will be no induced voltages and 
currents in the planar circuits, thus no resistive power losses. (There 
will be small eddy-current losses in the conductors. These losses can 
be minimized by the use of litzendraht wire for the conductors.) 
However, as soon as an axial displacement, either up or down, occurs, 
strong restoring forces will appear that will re-center the rotating 
magnet pairs. 
can be obtained from this configuration, even with quite small 
Halbach arrays. 
derivative should be larger than the combined (positive) axial force 
derivative associated with the two magnet pairs in the cartridge. 

When this is the 

Theory shows that substantial axial force derivatives 

All that is required is that this (negative) force 

Again, it should be recognized that the cartridge concept 
described here is one that is insensitive to temperature changes (as 
long as they are about the same for all the permanent magnet 
elements in the cartridge). This insensitivity occurs because of the 
balanced-force nature of the axial equilibrium position in the 
cartridge, for either of the two embodiments. 

The cartridges described also have two additional elements 
that perform necessary functions. When the rotor is at rest, or when 
its speed is below a critical speed, the Halbach array system will not 
be able to exert its axially stabilizing influence on the axially 
unstable elements in the cartridge. In the embodiment using two 
magnet rings (or two iron poles) facing each other, the inner two 
magnets (or poles) of the two pairs will be unstable axially and will 
move so as to close one or the other of the gaps between them and 
their stationary mate. In the second embodiment, the one employing 
concentric permanent magnets (or their equivalent with nesting pole 
structures) the equilibrium position is unstable in that the inner 
magnet will try to pop out axially from its centered position. We will 
take advantage of this effect, in either embodiment, to engage ball 
bearings, one at each end of a cartridge. Axial motion beyond the 
excursions normally expected in operation will result in socketing the 
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outer ball bearing race in a recessed hole, thus limiting both axial 
and radial displacements. Now, when the rotor is speeded up above 
its transition speed (substantially below its normal operating 
speeds), the Halbach arrays will generate an axial force sufficient to 
center the system, thus disengaging the ball bearing, whichever one 
is engaged. 
will still be surrounded by a shroud ring with a clearance that 
defines the displacement at touchdown. 
provide two functions: (1) axial stabilization of the cartridges below 
the transition speed, and (2) touchdown bearings as required for 
radially or axially directed accelerations beyond the level of those 
that can be accommodated by the axial or radial magnetic bearing 
el em en ts . 

In the disengaged position, however, the ball bearings 

The ball bearings thus 

With care in the design, and in the symmetrization of the 
levitating and centering permanent magnet elements (the washer- 
like elements or their equivalent), there should only be low power 
losses (those arising from eddy currents in the litzendraht wire) from 
these elements. Also, as we have mentioned, when the cartridges are 
operated in a centered position, there will be minimal resistive losses 
in the planar circuit arrays. To minimize losses when the vehicle is 
parked it remains to insure that this centered condition is 
maintained. The corollary is that neither cartridge should be called 
upon to provide an appreciable axial force component when the 
vehicle is parked, or during normal driving. During normal driving 
(or in the infrequent case when large vertical accelerations are 
encountered) it will be required that the associated vertical forces on 
the rotor are either supported by the repelling bearing elements, or 
by the backup ball bearings. 
accomplished is through the design of the support structure for the 
bearing cartridges. The cartridges are to be supported by springs 
and/or guides that constrain their motion radially, while allowing 
them to move axially about their equilibrium position freely. 
simple example of such a mount would be two or more vertical rods 
sliding in holes in the cartridge housing, with low compliance springs 
supporting the cartridges against gravity. Within defined vertical 
limit stops the cartridges would bob up and down freely under 
normal acceleration loads, with the axial forces on the rotor (arising 
from vertical accelerations) being taken up by the repelling bearings. 
On the occasion of encountering a pot hole the displacement would be 
large enough to make the cartridges hit their vertical stops, thus 
bringing the backup bearings into play. 

The way that this objective can be 

A 
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A schematic drawing illustrating the main features of a bearing 
cartridge and its component parts is shown in Figure 4. 
example shown the attracting magnet pairs are annular permanent 
magnets in the configuration described earlier (Figure 1 a). 

In the 

Because of the use of guide rods and low compliance springs to 
support the cartridges, the force exerted on the Halbach arrays by 
the planar circuits will always be limited to that required to keep the 
cartridge centered relative to its rotating elements as the rotor 
moves up and down. Since the mass of the cartridges will be very 
small compared to that of the rotor, the axial forces required to 
maintain centering under normal conditions (Le., for displacements 
less than those defined by the vertical stops) will be correspondingly 
small. 
large force. 
backup bearings will take the load. 
required of the planar circuits will correspondingly limit the power 
dissipation in those circuits to a low value under all circumstances. 

At no time will the planar circuit be called on to deliver a 
When large forces are required (the pot-hole), the 

Limiting the vertical force 

IV) Quanti ta t ive Considerations: Rotor Parameters  

To perform a detailed design of a bearing system based on the 
concepts outlined above would require analysis of a specific system. 
In the absence 'of such data, however, there are some general 
analytical results and scaling laws that can be set down. 
results will aid in assessing the design issues to be addressed in 
carrying out a detailed design. 
use as a "straw man" case an EMB with the following specifications: 

These 

To normalize these results we will 

Usable stored energy (with 2:l speed ratio) 0.5 kWh 

Peak power of generatodmotor 50 kW 

Aver. energy density in fiber comp. (at full speed) 200 Wh/kg 

Weight of rotor (fiber composite only) 3.33 kg 

Weight of Halbach array + rotating bearing elements 1.67 kg 

Of these specifications the critical one is the total levitated 
weight, 5.0 kg., from which the major parameters of the magnetic 
bearing system can be defined. 
undefined by the above table of values is the maximum operating 

The only important parameter left 



1 0  

speed of the rotor. The peak rotation speed will be determined by the 
aspect ratio of the rotor itself, i.e., whether it is it is ring-like, or in the 
form of an elongated cylinder. 
being determined by the peripheral speed of the rotor, would be 
typically in the range of 30 to 40 thousand RPM. If cylinder-like, the 
speed would be higher, say 75 to 90 thousand RPM. The bearing 
design sketched in what follows should, however, not be particularly 
sensitive to which one of these two speed ranges is applicable. 

If ring-like, the peak rotation speed, 

Returning to the issue of determining the required levitating 
forces, it is necessary to define the peak '*g" loads that are to be borne 
by the magnetic elements (before the mechanical backup bearings 
come into play) Assuming that shock-absorbing mounts are used (in 
addition to the vehicle's shock absorbers) to filter out high-frequency 
components of road-induced accelerations, we will here specify that 
the maximum acceleration loads to be sustained by the magnetic 
elements are limited to 1.0 g, i.e., to acceleration-induced forces of 
order 50 Newtons. The direction of these accelerations might be either 
primarily vertical (as in going over a bump in the road), or primarily 
horizontal, as in "panic-stop" braking. Acceleration loads beyond this 
level, as noted, would be taken up by the backup bearing system. 

In addition to the levitating force requirements, the magnetic 
bearing system will be subject to other requirements. 
that its design should be such as to minimize losses of eddy-current 
origin, subject to the accompanying economic constraint that the 
permanent magnet material used in its manufacture should not be 
required to adhere to unduly rigid standards of uniformity of 
magnetization. 
comes from two sources: (1 )  the need to minimize problems of thermal 
management, and, (2) the requirement for an adequately long run- 
down time for the EMB when the vehicle is parked. 
of the straw man design given here, we will consider that total eddy 
current losses in the bearing system of 5 Watts or less would be 
acceptable. That loss level would correspond roughly to a run-down 
time constant of about 100 hours for the 0.5 kWh system we are 
considering (assuming that losses of aerodynamic origin are made to be 
negligible by good vacuum practice in the design of the rotor housing). 
In this report it will not be possible to exactly specify eddy-current 
losses, in the absence of experimental data. However, it is believed on 
the basis of the approximate analysis given that the concepts described 
permit the design of a bearing system that should have losses that are 
at least as low as 5 Watts. It is possible that they might be made to be 

One of these is 

The origin of the need to reduce eddy current losses 

For the purposes 
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much lower than this figure if sufficient care is taken in the actual 
implementation of the design. 

V) Quantitative Considerations: Bearing Scaling Laws 

The design of a bearing system meeting specifications such as 
those given above can be facilitated by taking advantage of simple 
scaling laws. The use of these laws allows one to scale forces, force 
derivatives, and bearing weights as a function of the bearing element 
radius alone, using data from any attracting or repelling element for 
which these parameters are known. As long as all the appropriate 
dimensionless parameters, such as the ratio of magnet thickness to 
magnet radius, the ratio of magnet separation (between two magnets) 
to magnet radius, etc., are kept constant, then in the scaled dimensions 
the strength of the magnetic field will be the same as before. Since the 
force between the magnet elements varies as the product of an area 
and the square of the strength of the magnetic field, it follows that the 
force will be proportional to the radius of the magnet element, squared. 
That is, at the same dimensionless separation (i.e., the separation 
measured in units of the radius), for the original magnet pair (subscript 
1)  and the scaled pair (subscript 2) the ratio of their forces will scale 
as: 

where a2 and a l  are the respective radii of the two magnet pairs. 

It follows that at the same dimensionless separation between the 
magnet pairs, the derivative of the force (in the axial direction) is 
linearly proportional to the ratio of the radii, Le., 

dF2Jdz 
dF , /dz  = [:] 

Since for axially symmetric elements the force derivative (for 
small displacements in the radial direction) is just one-half of the force 
derivative in the axial direction, it follows that the force 'derivative in 
the radial direction scales in the same way with radius of the magnet 
elements as that for the axial force derivative. 
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The final relationship that we need, for economic reasons, for 
example, is the scaling law relating the weights of the bearing 
elements. This relationship is, of course, the simple one: ?=[?I 3 

( 3 )  

Since the three parameters we have listed scale in different ways 
with size of the bearing element their relative values will of course 
change with scaling. In the case of the force and its derivatives we see 
that the force derivative increases, relative to both the force itself, and 
relative to the weight of the bearing element, as the radius of the 
element is decreased. If increased stiffness (negative force derivative) 
is advantageous, this circumstance may influence the design of the 
overall bearing system. That is to say, the replacement of a single 
bearing element pair by two same-shaped smaller ones exerting the 
same total levitating force would result in a bearing system that has 
1.414 times the stiffness in its stable direction (radial or axial) with a 
total weight 0.707 times that of the single pair. 
be recognized that for a given bearing element pair the ratio of the 
force derivative to the levitating force is a function of the separation 
between the pair. 
another option for the control of this parameter, but obviously requires 
data concerning the particular elements involved and therefor cannot 
be reduced to a simple general scaling law. 

Of course it should also 

This circumstance provides the designer with 

An illustration of this latter method of scaling is the following: In 
the case of the bearing “cartridge” concept that we have outlined above 
there is a simple way in which to achieve any desired radial stiffness 
(within the bounds of the maximum value of this parameter for the 
elements themselves): This approach is to adjust the gaps of the two 
opposing elements to smaller or larger values. 
radial force derivative is increased or decreased, respectively, without 
influencing the axial force balance of the bearing system as a whole. 
Increasing the radial stiffness reduces the radial displacement for a 
given lateral acceleration load, but at the same time puts additional 
demands on the axial stabilizer element that must overcome the 
increased axial negative stiffness that comes with increased radial 
positive stiffness. 

In this manner the 
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Generally speaking, in the absence of other restraints, wherever 
possible one should aim for the lowes t  radial stiffness that is tolerable, 
i.e., to aim at a design having a stiffness that is just adequate to 
restrain the rotor laterally under the maximum acceleration load to be 
sustained before the mechanical backup bearing system comes into 
play. In this way the least demands are put on the axial stabilizer, 
simplifying its design and leading in most cases to reduced residual 
power losses in this element. 

Another reason for designing in the direction of smaller radial 
stiffnesses has to do with the eddy-current losses in the bearing 
elements themselves: If the magnetic fields of the bearing elements 
are sufficiently close to axial symmetry to minimize eddy-current 
losses from this origin when these elements are rotating concentrically, 
there is still another potential source of such losses. This source is the 
one associated with unbalance-related eccentricity in the axis about 
which the system rotates at high speeds (relative to the geometric axis 
of the bearing elements). 
magnetic gradients in the magnetic gap between the elements. Steep 
gradients in this region imply increased eccentricity-induced 
periodically varying magnetic fields at the surface of the magnets 
themselves (if simple pairs of ring magnets are used), or at the pole 
faces of iron pole structures if these are used. 
magnetic fields then will result in eddy-current losses in these metallic 
elements. 

High radial stiffness implies steep radial 

These time-varying 

On the basis of simple estimates given below it is believed that 
with care in the design and with attention to the issue of balancing 
eddy-current losses will be quite small. 
present an appreciable problem the use of pole structures fabricated 
from powdered iron core material such as that used in the electronics 
industry would reduce eddy current losses to negligible levels. 

However, if these losses 

VI) Bearing Specifications for the "Straw man" Design 

Before discussing the dimensional and other parameters of a 
bearing design suitable for the "straw man" EMB we need better to 
define its requirements. The levitation requirement, 5 kg, has already 
been specified and together with it, the maximum axial and radial 
excess force requirements, 50 Newtons, needed to satisfy 1.0 g 
acceleration loads, either horizontal or vertical. Still needed is a 
specification of the maximum allowable transverse displacement of the 
rotating elements of the bearing cartridges. That is, that displacement 
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that would result in contact with the backup bearings (needed for 
infrequent higher-g acceleration loads). As noted earlier, typically 
there will exist a relatively large magnet-to-stator-housing gap in an 
EMB employing a dipole Halbach array. In light of this fact i t  seems 
reasonable to design for a maximum lateral displacement of 2 mm. 
Combining this figure with the 50 Newton transverse force 
requirement leads to a required minimum total net positive radial 
stiffness of 2.5 x lo4 Newtondmeter (140 lbf/in.). 
sum of the positive radial stiffness of the two bearing cartridges and 
the negative radial stiffnesses of the two repelling bearing elements 
should exceed this value. 

That is, the vector 

In the vertical direction even larger displacements should be 
allowable, so that substantially lower stiffnesses would still be 
acceptable. 
with the two repelling elements, since the bearing cartridges, by the 
way they are mounted and constructed, do not contribute to the axial 
stiffness. Thus to satisfy the requiiement on vertical stiffness we will 
therefor make the conservative assumption that a total vertical 
stiffness (the sum of the bottom and top repelling bearing stiffnesses) 
of the same magnitude as the total radial stiffness will be adequate. 

In this case the axial stiffnesses are solely those associated 

VII) A Bearing Design Using Annular Pole Assemblies 

Since force data from computer-code calculations of a particular 
annular pole assembly of the type shown in Figure 2 exists, we will use 
these data, together with the scaling laws given in Section V, to design 
the main elements of a complete bearing system for our straw man 
hybrid EMB system. Figure 5 depicts this same structure, but with 
call-outs for the various dimensions involved. The magnet material 
shown on the drawing is NdFeB with a remanent field of 1.25 Tesla. 
Using the dimensions and materials shown computer-code calculations 
give the the force as a function of axial displacement as shown in 
Figure 6 (attracting mode) and Figure 7 (repelling mode). Whether the 
pole faces attract or repel each other depends, of course, on the relative 
direction of magnetization (in the axial direction, as shown) of the 
permanent-magnet material. 

Note first that the forces involved for bearing elements of the 
size indicated in Figure 5 are far larger than those needed for the small 
rotor weight of our straw man design. 
repelling force, shown in Figure 7, is over 400 Newtons, a force large 
enough to levitate over 40 kilograms of weight. 

For example, the maximum 
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In like manner, from Figure 6 we can estimate that for the 
attracting mode the radial force derivative from a single pair of 
elements is of order (1/2)x(1.5 x lo6) = 7.5 x lo5 Newtondmeter at a 
pole-to-pole gap (axial separation) of order 0.5 mm. This magnitude of 
force derivative is 30 times larger than the value needed to satisfy the 
minimum requirement stated in Section VI, giving us considerable 
latitude in carrying out the overall design, where the vector sum of the 
radial force derivatives meeting those requirements is to be satisfied. 
As will be seen the desired value of radial force derivative can be 
achieved by a combination of scale-down and operation at a larger 
dimensionless axial gap. 
force derivative of the attracting pair has fallen by a factor of about 5 ,  
to 1.5 x lo5 N/mm. and 
derivative will be even smaller. 

For example, at a gap of 2.5 mm. the radial 

at larger relative separations the force 

Since the repelling pair will define the magnitude of the negative 
radial stiffness that must be overcome by the radially stabilizing 
bearing cartridges we must start our design with the former elements. 
We begin by choosing a median gap of 2.0 mm in Figure 7 for which 
the repelling force is about 300 Newtons and the axial force derivative 
is about 5.0 x lo4 Newtondmeter. Over the range between 0.5 mm. 
and 3 mm. the force curve is seen to be approximately linear. At 0.5 
mm. the axial force is over 400 Newtons. We will take advantage of 
this increase in force at small displacements in the design, as a means 
of limiting the vertical displacement under vertical acceleration loads. 

Since the full-scale bearing elements can levitate a much larger 

Since the net vertical force that 
weight than our 5 kilograms, the next step is to choose the scale-down 
factor for the repelling bearing pair. 
supports the rotor against gravity is the resultant of two opposing 
forces, 
the position of the vertical equilibrium must reflect this fact. 
have two choices: 
so that the equilibrium position is at a smaller vertical displacement 
for the lower element than the upper one, taking advantage of the 
variation of repelling force with displacement. 
element could be larger in dimension than the upper, so that at the 
same dimensionless displacement the net upward force would be in 
equilibrium with the levitated weight. For the design sketched here 
we will choose the former of the two alternatives. 

from the lower repelling pair and down from the upper pair, 
Here we 

Either the upper and lower pairs could be identical, 

Alternatively, the lower 
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From Figure '7 again, we will choose for the displacement at 
equilibrium of the lower repelling pair the value of 0.1 cm, and for the 
upper pair a displacement of 0.3 cm., corresponding to a difference 
force of about 150 Newtons. 
force required for our straw man EMB rotor. We will therefore need to 
scale down the size of the bearing elements (from that shown in Figure 
5 )  by a factor 41 /3  = 
As a result of this scaling the axial stiffness is scaled down by the same 
factor. Approximating the slope of the repelling force curve as a linear 
function over the displacement range of 1.0 mm. to 3.0 , the axial force 
derivative for one element pair is, before scaling down, equal to -(400 
- 260)/.002 = - 7.0 x lo4 Newtondmeter. The scaled down value is 
therefor equal to -4.0 x lo4 N/m. The axial stiffness of the upper and 
lower repelling elements combined is twice that value, i.e., 8.0 x lo4 
N/m. 

This force is about 3 times the levitating 

0.5'77 to arrive at our required levitating force. 

With the above-indicated axial stiffness, a vertical acceleration- 
induced load of 50 Newtons (1.0 g vertical acceleration) would then 
result in a relative displacement (from the equilibrium position) of 
50/(8.0 x lo4) = 6.25 x m. = 0.6 mm. Displacements resulting 
from upward accelerations larger than this would be restrained by the 
backup bearings. 

Since the radial stiffness for small displacements of each 
repelling pair is 
total negative radial stiffness that must be overcome by the two . 

bearing cartridges is equal to 4.0 x lo4 N/m. This figure then will 
determine the scaling factor that we use in designing the bearing 
cartridges, considered next. 

negative one-half of that for axial displacements, the 

For our design we will take as the radial force derivative of a 
magnet pair (before scaling down) as that associated with a 2.5 m. 
gap between the two poles, namely, -1.5 x lo5 N/m. Since there are 
two bearing cartridges, each having 2 pole pairs, the total radial force 
derivative (before scaling) is - 6.0 x lo5 N/m. 

We next calculate the actual radial force derivative that is 
required to be supplied to overcome the negative stiffness of the 
repelling bearings, plus the net positive stiffness requirement for the 
assembly as a whole, namely, 2.5 x lo4 N/m. The negative radial 
stiffness introduced by the repelling elements, given above, is 4 x IO4 
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N/m. 
lo4) = 6.5 x lo4 N/m. to satisfy the radial stiffness requirement. From 
this fact we deduce that the scale factor for the radial force derivative 
of the attracting elements is equal to (6.5 x lo4 / 6.0 x105) = 0.11 
From Equation 2 we see that this is the same factor by which the 
radius of the bearing must be scaled, so that we find for this radius the 
approximate value a2 = 6.0 x .ll = 0.7 cm., a small sized unit indeed. 
It is in fact so small that it may be worthwhile, to facilitate 
construction and assembly, to design to a larger displacement gap, off 
the end of the curve in Figure 6, to reduce the radial stiffness (before 
scaling) and thus permit the use of a bearing element with a larger 
radius. 

It then follows that the cartridges must supply (4 x lo4 + 2.5 x 

To recapitulate, the radius of the repelling bearing elements is 
6.0 x .577 = 3.5 cm., and the radius of the attracting bearing elements 
in the cartridges is 0.7 em. 
levitation and also provides both axial and radial stiffnesses sufficient 
to limit the radial and axial excursions of the rotor under acceleration 
loads of 1.0 g to 2.0 mm. or less. In the next section we will consider 
the last major element in the overall design, namely, the design of 
stabilizer needed to overcome the negative axial stiffness associated 
with the two attracting elements in each of the two bearing cartridges. 

This combination of elements provides 

VIII) Design of the Axial Stabilizer 

As noted earlier, the axial stabilizer bearing element utilizes a 
planar array of litzendraht wire conductors sandwiched between two 
planar Halbach arrays to produce a strong positive axial stiffness when 
rotating, with near-zero power losses in the equilibrium position 
(planar conductor array midway between the two Halbach arrays). We 
will present here some approximate design equations for the axial 
force derivative derivable from such a system. These will serve to 
provide a first cut at a design for the stabilizer. 
require model tests to set the correct parameters. 
seen the approximate equations may be adequate to set the 
dimensional scale of the arrays, with the separation between the two 
Halbach arrays being an adjustable parameter than can be used to 
"tune" to the desired performance. 

A final design would 
However, as will be 

We present below an equation giving an analytical result, useful 
for an approximate estimate of the force derivative achievable from a 
stabilizer, assuming it is operating well above its "transition speed". 
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The transition speed is the speed where the inductive reactance of the 
circuit array, rising with rotation frequency, becomes equal in 
magnitude to its resistance. 
rotation speed that is much lower than the operating speed range of 
the EMB rotor. For example, for the case analyzed below it is estimated 
be- about 5000 RPM, as compared to typical operating speeds of 40,000 

This transition typically occurs at a 

to 80,000 RPM, depending on rotor design and aspect 

The result for the axial force derivative is: 

2r iBt  dF, d z  = - N, [ ~ ] [ 1  - >r [I + :] exp(-2kh) 

Here r2 (m.) is the outer radius of the planar Halbach 

ratio. 

N/m. (4) 

array and rl (m.) 
is its the inner radius, Bo (Tesla) is the strength of the magnetic field at 
the surface of the Halbach array (defined below, Equation 6), N, is the 
number of radially directed conductors in the planar circuit array and 
Lo 
(including both self- and mutual-inductance). The quantity 2h (m.) is 
the separation between the upper and lower Halbach arrays, and the 
parameter k (m-') is the azimuthal wavenumber of the Halbach array, 
defined by the equation: 

(hy) is the inductance of a single loop of that circuit array 

k = m/r, m-l 

where m is the number of periods (wavelengths) around the Halbach 
array.  

From Halbach's theoretical work [l] we have an expression for 
Bo (Tesla), the strength of the magnetic field at the surface of the 
Halbach array, given in terms of B,, the remanent field of the 
permanent magnet material, the number of magnet sectors per 
azimuthal wavelength, M, and d (m.), the axial thickness of the sector 
magnets of the Halbach array: 

Bo = B, [l - exp(-kd)] Tesla 
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(A typical value calculated for Bo when using NdFeB magnet material 
with B, = 1.25 Tesla and taking M = 4 and kd >> 1 is about 1.0 Tesla). 

To illustrate the fact that, using Halbach arrays with a relatively 
small outer radius, it is still possible to generate stabilizing axial force 
derivatives at a substantial level, we will introduce the following 
values into equation (4): 

We take N, = 48, r2 = .025 m. and rl/r2 = 1/3, Bo = 1.0 Tesla, Lo = 
Hy (a typical value for planar circuits of this size with ferrite 0.2 x 

bead inductive loading), and m = 2 azimuthal wavelengths, yielding 
2/(.025) = 80 m-l. 
derivative the estimate: 

Using these values we find for the axial force 
k =  

= 1.8 x lo5 exp(-160h)] N/m. - dFz 
d z  (7)  

Recall now that the each axial stabilizer needs to contribute a positive 
axial stiffness that overcomes the negative axial stiffness of the 
attracting elements in a bearing cartridge. 
calculations we recall that the radial stiffness of each cartridge needs to 
be equal to (6.5 x 104)/2 = 3.25 x lo4 N/m to overcome the negative 
axial stiffness of the repelling elements, plus the radial stiffness 
required to limit the transverse displacement of the rotor to 2 m. 
under acceleration loads of 1.0 g. However, since the axial force 
derivative of the attracting elements is, in magnitude, just twice that of 
the radial force derivative the end result is that each axial stabilizer 
needs to contribute slightly in excess of 6.5 x lo4 N/m. 
7 above we see that this result can be achieved by making the 
separation, 2h (m.), between the two Halbach arrays equal to or 
slightly less than 1.2 cm. 

From the previous 

From Equation 

While the above results are only approximate they serve to 
illustrate that relatively small axial stabilizers (5  cm. in diameter in the 
example) can provide an adequate amount of positive axial stiffness to 
stabilize the axial instability of the pair of attracting elements in the 
cartridges. This even includes the additional stiffness implied by the 
fact that the radial stabilizers must provide sufficient stiffness to resist 
1.0 g transverse loads while at the same time overcoming the negative 
radial stiffness of the repelling elements. 
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The intent of the above exercise has not been to come up with a 
final design for a passive bearing system for an engineered EMB for 
hybrid vehicle service. 
example that shows the overall feasibility of the concepts described. 
This feasibility relates both to meeting quantitative requirements such 
as acceleration loads, and to the fact that the system is made up of 
simple elements of small size, ones that should be able to be 
engineered and fabricated at modest cost. 

It has instead been intended to provide an 

In connection with the cost issue, it would appear that the only 
elements of the system whose cost per kilogram will be a consideration 
is that of the NdFeB magnets, projected to be about $50/kg. 
data we have given above on sizes of the elements and using the 
scaling law, Equation 3 ,  for 
weight of NdFeB that would be required in the "straw man" design that 
was presented. The results are as follows. 

From the 

the scaling laws, we can estimate the total 

Total weight of (8) magnets in the attracting elements: .003 kg 

Total weight of (4) magnets in the repelling elements: -25 kg 

Total weight of (4) magnet sets in the Halbach arrays: .54 kg 

.80 kg 

Examining this table it can be seen that it probably would be 
worthwhile to increase the size of the attracting elements, while 
working at a larger dimensionless gap, so as to make their construction 
less of a "watchmakers job", since their contribution to the magnet cost 
at the indicated size is so small. Other optimizations could include: 

(1) Reducing the thickness of the Halbach array magnets, thus their 
weight, by operating with a narrower gap between them. For example, 
reducing the thickness of the magnets by a factor of 2, while closing 
the gap between the magnet arrays to 0.6 cm. would result in the same 
axial stiffness at one-half the weight of magnets. 

(2) Reducing the weight of the magnets in the repelling elements by 
allowing a larger vertical displacement before contacting the backup 
bearings (displacements in the axial direction can be much larger than 
2 mm. without harming the performance of the system). 
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The material and fabrication cost for the other elements of the 
bearing system, for example the iron pole assemblies and the planar 
circuit array, should be quite small in large scale production, but it is 
beyond the scope of this report to attempt such a detailed cost analysis. 

IX) Losses of the Bearing System: General Comments 

Although it is not possible, in the absence of data from a fully 
engineered system, to specify the exact value of the losses associated 
with the bearing system described above, it is possible to make some 
estimates. These estimates, detailed below, indicate that with good 
design and quality control the bearing-related losses should be very 
low, of order a Watt or two. When we speak here of "losses" we are 
referring only to those losses that occur when the vehicle is parked and 
the bearing system is therefore not subject to any accelerations other 
than gravity. When in motion, particularly when the backup bearings 
come into play, the bearing losses could be much larger without 
influencing the overall performance, since under these conditions the 
energy flows into and out of the EMB are orders of magnitude larger 
than bearing-related losses. 

There should be only two appreciable sources of losses within the 
system while it is parked. These are: 

(1 )  
attracting and repelling magnets associated with unbalance-related 
eccentricity of the rotation. (We believe that the use of permanent 
magnets embedded in iron pole structures will effectively eliminate 
any appreciable intrinsic azimuthal variation of the magnetic fields at 
the surface of these poles). 

Eddy-current and hysteresis losses in the pole faces of the 

(2) 
axial stabilizers. 

Eddy-current losses in the conductors of the planar circuits of the 

Evaluation of the first of these losses is difficult in the absence of 
However, a rough estimate will be 

This estimate is favorable 
a detailed analysis of a final design. 
given in terms of a simple analytical model. 
in that it predicts a low level of losses for reasonable values of the 
parameters .  

Estimation of the second source of losses is easier, as the theory 

These are the only appreciable losses within the 
of eddy-current losses in litzendraht wires in a time-varying magnetic 
field is well known. 
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axial stabilizers that should appear under standing conditions, that is, 
when they are not called on to deliver a net force. 

X) Losses of the Bearing System: Eccentricity-Related Sources 

We will base our estimate of the eccentricity-related losses in the 
bearing system on a very simple model. 
only the time-varying component of the incident magnetic field at the 
surface of the magnet poles of either the attracting elements or the 
repelling elements contributes to eddy-current losses within those 
poles. The constant part of the field coming from the opposing pole 
will set up a fixed pattern of Amperian currents in the pole we are 
considering that accommodates to that flux. However, when the 
incident flux changes rapidly with time, the effect of eddy currents on 
the surface of the pole will be to provide an augmented current pattern 
that excludes the time-varying component of this flux from the interior 
of the pole. 

This model recognizes that 

To estimate the magnitude of the time-varying component of the 
flux we will approximate the magnitude of the once-per-revolution 
periodic field by simply considering the overlapping area between two 
annular rings with non-concentric axes. 
reasonable one when the gap between the two poles is very small. 
such a case the magnetic flux through the pole will tend to vary 
linearly with the overlapping area. Thus the difference between the 
area of the poles and the overlapping area will be a measure of the 
magnitude of the periodic flux change at the surface of the pole, going 
to zero in the limit of zero eccentricity, and representing a linear 
function of the eccentricity. 
in the dissipation by eddy currents of some fraction of the magnetic 
energy carried by the periodic component of the magnetic field. 

This assumption is a 
In 

Each period of the rotation will then result 

For an eccentric displacement, E (m.), the ratio of the displaced 
area to the total pole area, with outer radius ro (m.) and inner radius 
ri (m.), is given by the relation: 

Thus we find for the area AA the expression: 
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AA = 2&(ro - ri) m2 (9)  

Considering now the eddy-current losses in the poles, we note 
that the effect of eddy currents, which will be concentrated within a 
skin depth of the side and top surfaces of the poles, is to suppress flux 
variations within the pole. 
currents will be of just such a magnitude as to produce an oppositely 
directed flux equal to the incident time-varying flux. The skin-depth 
within which these currents are concentrated is given by the 
expression: 

Thus, as mentioned above, the eddy 

where p (ohm-m.) is the resistivity of the pole material o is the 
frequency in radianslsec., and p is the permeability (in MKS units). 

The time-varying flux that is excluded by the surface eddy 
currents is approximately equal to the surface field, B, times ;he non- 
overlapping area of the poles, so that, using Equation 9, we can write 
for this flux: 

Q, = 2&(ro - ri) B, Tesla-m2 

It would be difficult to calculate the exact pattern of eddy 
currents needed to exclude this changing flux from the pole. 
for estimating purposes we can make a simplifying assumption, one 
that should not give grossly inaccurate answers. 
assume that the eddy currents are confined to parallel strips, lying on 
the side surfaces of the pole, strips whose width is the order of the 
width of the pole face itself. 
these strips produces a flux between them that is equal and opposite to 
the flux that is to be excluded. 
estimate of the magnitude of the actual currents, and thus of the 
resistive losses that they will introduce. 

However, 

We therefor will 

We further assume that the currents in  

In this way we can arrive at an 

Integrating the flux between these two current strips at their 
plane of symmetry we are led to the following approximate expression: 



2 4  

POI =--- [ln(5) + n][rO + ri] 4n 

Equating the two fluxes we may solve for the current that flows 
in the skin-depth-deep strips, finding: 

This current is flowing in the two conducting strips whose width 
is a skin depth and whose height is equal (by assumption) to the pole 
width, (ro-ri). The total resistance of the ribbons is therefore equal to 

R = [2n(ro+ri)p]/[6(r,-ri)] (14)  

The power dissipated is equal to the rms value of R12, so that we 
find for the estimated eddy current loss the expression: 

Putting in the numerical value of the constants yields the equation: 

Inserting the resistivity of iron, 1.0 x ohm-m, and assuming 
a permeability of 1000po for the iron pole material, and a frequency of 
1000 Hz, we find for the skin depth the value: 

6 = 1.6 x m., 

so that our expression for the eddy-current losses (with iron as 
the conducting material) becomes: 

P,, (iron)= 1.6 x 10l1 mJ r,+ri [ E ~ B ~ ]  Watts (17)  
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Taking the repelling poles as an example, with ro = .06 m. and ri = 

.054 m., B, = 0.5 Tesla, and E = 3 x ~ O - ~  m (.001", typical of what has 
been found in practice when care has been taken in the balancing), we 
find for the power loss (per pole face) the value 

P,,(iron) = 1.9 Wattdpole 

This level of losses would be marginally acceptable, but the 
approximate nature of the calculation is such that there is possible 
cause for concern. 
of the eccentricity, the effect of poor balance (larger values of E) in 
increasing the loss is magnified. 

Note also that because the losses vary as the square 

If we now re-examine the expression for the eddy current losses 
it can be seen that there is available a simple way to reduce the losses 
substantially. This way would be to copper plate the iron pole faces to 
a thickness that is comparable to the skin depth in copper. If we now 
recalculate the constants in Equation 16, inserting the resistivity of 
copper, we find for 6 the value 1.5 x m., and for the losses the 
expression: 

ro-ri 
P,,(copper) = 3.0 x lo9 1-1 ro+ri [E~B:] Watts : 

The eddy current loss calculated for the previous case now is greatly 
reduced, becoming 

P,, (Copper) = 35 milliWatts/pole 

This low a level of losses, when summed over all the poles, would 
still represent an almost negligible energy drain on the system during 
standing. 

Another method of reducing eddy-current losses in the poles, 
mentioned in Section V, is to scale up the bearing size, and then to 
operate at a larger dimensionless gap. 
same magnitude of the force derivative, while at the same time 
reducing the relative amount of eccentricity-induced flux change by 
reducing the magnetic gradients at the surface of the poles. 

This procedure can preserve the 
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In the above examples, where the flux is excluded from the iron 
pole faces by the shielding eddy currents, and where there will be 
present a very low value of the alternating flux component as 
compared to the main field, losses from magnetic hysteresis should be 
completely negligible. In case the iron or the copper-plated iron poles 
were to be replaced by powdered iron pole material there would be a 
very small loss from hysteresis effects, but in this case there would be 
totally negligible losses from eddy currents, owing to the elimination of 
macroscopic conducting surfaces. 

The conclusion to be drawn from the above discussion about the 
losses in the permanent-magnet excited elements of the bearing 
system is that there exist design concepts that should lead to 
satisfactorily low losses from that part of the system. 
the second source of losses under static conditions, the eddy currents in 
the litzendraht wires of the planar circuits in the axial stabilizers. 

XI) Losses of the Bearing System: The Axial Stabilizers 

We turn now to 

+. 

Under equilibrium conditions, when the planar circuit of the axial 
stabilizer is centered midway between the two Halbach arrays, there 
should be near-zero current in its conductors and thus negligible ohmic 
losses in these conductors. However, the conductors will be immersed 
in a strong time-varying magnetic field so that an eddy current pattern 
will develop within these conductors that will entail losses. The classic 
method of reducing these losses is the use of litzendraht wire, that is, a 
conductor made up of a bundle of insulated fine wires, specially 
braided so that each wire in that conductor experiences the same 
average flux (thereby minimizing "closed-loop" currents from end to 
end of the conductors). As will be seen, the use of sufficiently finely 
divided litz wire in the Halbach array can reduce this source of losses 
to a very small value, one that is completely compatible with the 
rundown-time requirements of the bearing system. 

From theory we have a simple expression for the eddy-current 
losses, in units of Wattdmeter, for a thin wire of radius, a (m.) and 
resistivity p (ohm-meters), immersed in a magnetic field B (Tesla), 
varying at an angular frequency of o (radians/sec/). The expression is: 

TC B2m2a4 =.[ p 1 W at ts /me ter 
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We will now apply this relationship to the planar circuit array 
described in Section VIII. In that circuit array there are 48 radially 
directed conductors, each about -025 meters long, for a total length of 
conductor immersed in the rotating Halbach field of 1.2 m. 
magnitude of this field at a distance h (m.) from the surface of the 
magnets (i.e., half the separation between the two Halbach arrays) is 
given by the relation: 

The 

B = 2.0 Bo exp(-2kh) Tesla (20)  

Here k = 80 m-l, h = .006 m., and Bo = 1.0 Tesla, so that B = 0.77 Tesla. 

Litz wire can be obtained commercially in a variety of sizes. For 
our example design we will choose a conductor that is equivalent to 16 
AWG wire in conductivity, being made up of 1000 strands of 46 AWG 
copper wire. The radius of each 46 AWG strand is 2.0 x m. The 
total length of these strands exposed to the field is 1000 x 1.2 = 1200 
m. From Equation 19 we then find for the eddy-current loss the result 

P = 2.6 10-9 0 2  Wat t s  (21) 

At a rotation speed of 1000 Hz (60,000 RPM), we find for the 
eddy-current loss the value 0.10 Watts. 
much lower than our overall target of Ploss < 5 Watts it would be 
possible to use a larger gauge litz wire (if this was desirable). 
example, in case we wished to achieve a lower transition speed or if we 
wished to reduce resistive heat losses when the stabilizer is required to 
produce substantial forces in the presence of transient acceleration 
loads. 

Because this level of losses is 

For 

XII) Other Technical Issues 

In the foregoing we have described the main details of the  design 
of the magnetic elements of a passive bearing system. 
operative, that is to provide for operation from zero speed up to the 
"transition speed" of the axial stabilizers, and for axial and radial 
restraint of the rotor in the presence of accelerations in excess of 1.0 g 
(the design limit for the magnetic bearings assumed in the example 
given here), as noted, mechanical backup bearings must be used. Also, 
as in all high-speed rotating systems, damping, either in the form of 
eddy-current-based dampers, or viscous mounting of non-rotating 
bearing components, needs to be provided. These techniques are well- 

To be fully 
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known in the art and therefor will not be discussed here, important 
though they are. 

XIII) Summary and Conclusion 

In this report an approach is described to the problem of 
designing a passive magnetic bearing system suitable for use in an 
electromechanical battery in a hybrid-electric vehicle. The main 
requirements that a magnetic bearing system for such service must 
address are those associated with acceleration-induced loads, those 
coming from the need for low losses while the vehicle is parked, and 
those associated with minimizing cost. 
approaches that have been suggested can meet all of the above 
requirements. 

We believe that the design 

Better to define the approach, a "straw man" design has been 
presented. 
design of a practical system. 
large magnetic bearing elements that were derived from magnetics 
computer-code cakulations. These data were then transformed to the 
smaller size appropriate to the straw man case by using scaling laws 
given in this report. 

This example could be used as a starting point for the 
The design utilized primary data on some 

While this report has emphasized the application of the ideas 
presented to hybrid-electric vehicles, the approach described here 
should have applications within the whole spectrum of uses for 
electromechanical batteries. It might also have applications in other 
areas of use of magnetic bearings. 
passively levitate with minimal losses at high rotation speeds suggests 
that these bearing systems could compete favorably with magnetic 
bearing systems utilizing superconductors. In stationary applications, 
for example, larger EMBs for load-leveling applications, stiffness 
requirements could be greatly relaxed. In such situations, as the 
analyses presented here can demonstrate, the losses of the entire 
bearing system might be reduced to substantially less than 1 Watt. A 
1 Watt bearing loss level for a 10 kWh EMB rotor would correspond to 
a run-down time of more than 1 year! Unlike either superconducting 
bearings or active magnetic bearing systems, our passive magnetic 
bearings have no external power "overhead" that must be supplied at 
all times, either in the form of cryogenic refrigeration for the 
superconducting bearings or power dissipated in electronic amplifiers 
in active magnetic bearing systems. 

In particular, the ability to 
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Figure Captions 

Figure la: Schematic representation of the centering elements of a 
magnetic bearing cartridge: Stacked annular elements 

Figure lb:  Schematic representation of the centering elements of a 
magnetic bearing cartridge: Nested annular elements 

Figure 2: Annular poles with permanent-magnet excitation 

Figure 3: Schematic representation axial stabilizer consisting of two 
(upper and lower) planar Halbach arrays with inductively 
loaded planar circuits between the arrays. 

Figure 4: Schematic drawing of a complete bearing cartridge with 
its annular centering magnets, its axial stabilizer, and its 
vertically compliant supports 

Figure 5 Annular poles as in Figure 2, but with dimensions shown 

Figure 6 Plot of the calculated axial force E displacement (zero 
displacement corresponds to contact) of a pole assembly 
as shown in Figure 5: Attracting case 

Figure '7 Plot of the calculated axial force vs displacement (zero 
displacement corresponds to contact) of a pole assembly 
as shown in Figure 5 :  Repelling case 
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